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Triple-negative breast cancer (TNBC) comprises ~15% of all 
breast cancer (BC) patients and represents a heterogeneous 
group of tumors associated with poor outcome1. Of all BC 

subtypes, TNBC exhibits the highest number of tumor-infiltrating 
lymphocytes (TILs)2,3, suggesting that TNBC could benefit from 
immune checkpoint blockade (ICB). The neutralizing PD-L1 
antibody atezolizumab improves progression-free and overall sur-
vival when combined with nab-paclitaxel as first-line treatment in 
PD-L1+ metastatic TNBC4. Anti-PD-L1 alone was also superior 
to maintenance chemotherapy in metastatic TNBC that was not 
progressive after six to eight cycles of chemotherapy5. Moreover, 
interim analysis of KEYNOTE-522, investigating the addition of 
an anti-PD1 antibody to neoadjuvant platinum-containing chemo-
therapy in previously untreated early TNBC, revealed an improve-
ment in pathological complete response (pCR) rate and event-free 
survival6. ICB is also being explored as a neoadjuvant treatment for 
other BC subtypes (NCT03725059 or KEYNOTE-756 in estrogen 
receptor-positive (ER+) and human epidermal growth factor recep-
tor 2-negative (HER2−) BC). This suggests that neoadjuvant ICB 
will soon become part of the standard of care for BC treatment.

However, not all BC patients respond to neoadjuvant ICB. An 
outstanding question is therefore to identify which underlying 
mechanisms and associated markers determine treatment response. 

So far, TIL scores and tumor PD-L1 expression have been proposed 
to predict clinical outcome7,8, but their efficacies as predictive mark-
ers are still unclear. Indeed, TILs represent a heterogeneous popula-
tion of cells with respect to cell type composition, gene expression 
and functional properties, and also differ between BC subtypes3,9. 
It is also not straightforward to delineate how TILs affect treatment 
outcome, as in the neoadjuvant setting ICB is combined with che-
motherapy and the response to neoadjuvant chemotherapy itself 
depends on TILs3.

In several other cancers, such as melanoma or lung cancer, clonal 
expansion of T cells underlies the treatment response to ICB10–12. 
Single-cell characterization of pre- and on-treatment biopsies has 
provided important insights into the patterns of T cell expansion 
and its underlying mechanisms13,14. However, these studies have 
so far only been performed on easy-to-biopsy cancer types, such 
as melanoma or basal/squamous cell skin carcinoma, profiling few 
patients (n = 11) or focusing exclusively on CD45+-immune cells. 
Therefore, to identify the mechanisms underlying the response to 
ICB specifically in BC, we treated 40 BC patients with neoadju-
vant anti-PD1 and monitored intratumoral changes by subjecting 
matched pre- and on-treatment biopsies to single-cell transcrip-
tome (scRNA-seq), T cell receptor (scTCR-seq) and combined tran-
scriptome and proteome (CITE-seq) sequencing.
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Immune-checkpoint blockade (ICB) combined with neoadjuvant chemotherapy improves pathological complete response 
in breast cancer. To understand why only a subset of tumors respond to ICB, patients with hormone receptor-positive or 
triple-negative breast cancer were treated with anti-PD1 before surgery. Paired pre- versus on-treatment biopsies from 
treatment-naive patients receiving anti-PD1 (n = 29) or patients receiving neoadjuvant chemotherapy before anti-PD1 
(n = 11) were subjected to single-cell transcriptome, T cell receptor and proteome profiling. One-third of tumors contained 
PD1-expressing T cells, which clonally expanded upon anti-PD1 treatment, irrespective of tumor subtype. Expansion mainly 
involved CD8+ T cells with pronounced expression of cytotoxic-activity (PRF1, GZMB), immune-cell homing (CXCL13) and 
exhaustion markers (HAVCR2, LAG3), and CD4+ T cells characterized by expression of T-helper-1 (IFNG) and follicular-helper 
(BCL6, CXCR5) markers. In pre-treatment biopsies, the relative frequency of immunoregulatory dendritic cells (PD-L1+), spe-
cific macrophage phenotypes (CCR2+ or MMP9+) and cancer cells exhibiting major histocompatibility complex class I/II expres-
sion correlated positively with T cell expansion. Conversely, undifferentiated pre-effector/memory T cells (TCF7+, GZMK+) or 
inhibitory macrophages (CX3CR1+, C3+) were inversely correlated with T cell expansion. Collectively, our data identify vari-
ous immunophenotypes and associated gene sets that are positively or negatively correlated with T cell expansion following 
anti-PD1 treatment. We shed light on the heterogeneity in treatment response to anti-PD1 in breast cancer.
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Results
Single-cell profiling before and during anti-PD1 treatment. We 
conducted a window-of-opportunity study (BioKey, NCT03197389) 
involving early-diagnosed BC. Briefly, one cohort of patients with 
non-metastatic, treatment-naive primary invasive carcinoma of 
the breast was treated with one dose of pembrolizumab (Keytruda 
or anti-PD1) approximately 9 ± 2 days before surgery (Fig. 1a and 
Methods). A second cohort of patients received neoadjuvant che-
motherapy for 20–24 weeks, which was followed by pembrolizumab 
before surgery. In both cohorts, a tumor biopsy was collected imme-
diately before anti-PD1 treatment (‘pre-treatment’), while another 
biopsy was collected during subsequent surgery (‘on-treatment’). 
Patients with different BC subtypes were included (Supplementary 
Tables 1 and 2 present the patient characteristics in both cohorts).

Using established protocols for scRNA-seq and scTCR-seq15–17, 
we obtained high-quality data for 29 pairs of pre- and on-treatment 
biopsies from patients receiving only anti-PD1 (cohort 1). This 
involved 175,942 cells, with 1,759 genes per cell detected, on average 
(Supplementary Dataset 1). Subsequent analysis identified several  
clusters, which could be assigned to malignant breast epithelial 
cells, immune cells, endothelial cells and fibroblasts (Fig. 1b and 
Extended Data Fig. 1a,b). We confirmed that malignant breast epi-
thelial clusters were copy number-unstable, while other cell popu-
lations, including fibroblasts, were copy number-stable (Extended 
Data Fig. 1c). Malignant cell clusters were patient-specific, while 
non-malignant clusters were shared between patients. There was 
no cluster bias in pre- versus on-treatment biopsies or different BC 
subtypes (Extended Data Fig. 1d–f).

We used scTCR-seq to define clonotypes based on shared TCR 
sequences in 51,499 T cells. As clonal thresholds, we considered 
T cells with shared sequences in >2 cells (n = 12,531) or >5 cells 
(n = 7,793). This identified nine patients with clonotype expansion 
on- versus pre-treatment at both thresholds (Fig. 1c). When consid-
ering clonotype proportions (clonotype frequencies normalized for 
the number of T cells), the same patients exhibited clonotype expan-
sion. We designated these as patients with clonotype expansion or 
‘E(s)’. The other patients (n = 20) exhibited limited or no clonotype 
expansion and were designated ‘NE(s)’. Some clonotypes also dis-
appeared on-treatment, suggesting that T cells undergo ‘clonotype 
contraction’. Clonotype contraction was less pronounced than 
clonotype expansion (Extended Data Fig. 2a,b), and was equally 
distributed between Es and NEs, suggesting it represents random 
sampling bias due to the comparison between biopsies taken from 
distinct tumor regions. Notably, some NEs (n = 11) exhibited a high 
percent of T cells before treatment (34.2 ± 3.8% versus 37.9 ± 5.7% 
in Es), but failed to expand upon anti-PD1. Other NEs (n = 9) rep-
resented cold tumors containing low T cell frequencies (8.4 ± 1.3%) 
and also failed to expand (Extended Data Fig. 2c). Finally, as much 
as 61% (range, 27–85%) of expanded T cells on-treatment had  
clonotypes already present pre-treatment (Extended Data Fig. 2d).

T cells expressing PD1 proliferate after anti-PD1 treatment. 
Next, we analyzed scRNA-seq data while stratifying for T cell 
expansion (E versus NE) and treatment (pre- versus on-treatment). 
Pre-treatment, fibroblasts were more frequent in NEs, while T cells 
were more frequent in Es (Fig. 1d). On-treatment, cancer cells and 
fibroblasts were more frequent in NEs, while T cells were further 
enriched in Es (Fig. 1d). Indeed, the percent of stromal TILs deter-
mined either by immunohistochemistry or scRNA-seq increased 
on-treatment in Es (Extended Data Fig. 2e,f). Notably, tumor muta-
tion burden and chromosomal instability did not differ between Es 
and NEs pre-treatment (Extended Data Fig. 2g,h).

PDCD1 (PD1) expression was limited to T cells and elevated 
in Es versus NEs, both pre- and on-treatment (Extended Data 
Fig. 2i,j). When subclustering T cells into their established phe-
notypes16 (Fig. 1e and Extended Data Fig. 3a–c), we identified 
one CD8+ and CD4+ cluster expressing PD1 (Fig. 1f and Extended 
Data Fig. 3b), representing activated T cells with exhaustion-like 
characteristics based on expression of immune-checkpoint 
(LAG3, HAVCR2, PDCD1), effector (IFNG, NKG7) and cytotoxic 
(GZMB, PRF1) markers. We refer to these as experienced T cells 
(TEX cells). We also detected a third PD1+ cluster consisting of 
highly proliferative T cells. Their relative abundance was higher 
in Es both pre- and on-treatment, but increased on-treatment 
(Fig. 1g). Proliferating T cells mainly consisted of CD8+ and CD4+ 
TEX cells, although a subset (13%) represented CD4+ regulatory 
TREG cells (Extended Data Fig. 3d,e). Up to 59% of proliferating 
T cells also shared clonotypes with their non-proliferating CD4+ 
and CD8+ TEX counterparts. We therefore assigned proliferating 
T cells to their respective CD8+ TEX, CD4+ TEX and TREG subclusters 
(Extended Data Fig. 3f). The resulting subclusters of CD4+ and 
CD8+ TEX cells were more frequent pre-treatment in Es than in 
NEs (Fig. 1h and Extended Data Fig. 3g). On-treatment, expanded 
T cells mainly comprised CD4+ and CD8+ TEX cells, although a 
subset represented CD8+ effector/memory T cells (TEM cells; 
Extended Data Fig. 3h).

The T cell clonality and Gini index were increased in Es versus 
NEs both pre- and on-treatment, with the highest clonality observed 
in TEX cells (Extended Data Fig. 3i). Conversely, clonotype richness 
was lower in Es than in NEs, pre- and on-treatment (Fig. 1i). When 
assessing whether pre-treatment PD1, TEX cell abundance, T cell 
clonality and richness could predict T cell expansion, we obtained 
area under the curve (AUC) values that were considerably better 
compared to the TIL scores, the number of T cells or tumor muta-
tion burden (0.92–0.96 versus 0.57–0.76; Extended Data Fig. 3j and 
Supplementary Dataset 2). We confirmed increased PD1 expres-
sion in pre-treatment T cells from Es using CITE-seq (Fig. 1j). 
Collectively, these data suggest that the % of PD1+ T cells, rather 
than the % of all T cells or TILs, is associated with T cell expansion, 
and that CD8+ and CD4+ TEX cells represent the majority of expand-
ing T cells following anti-PD1.

Fig. 1 | BioKey study design and annotation of cell and T cell phenotypes by scRNA-seq. a, Design of the BioKey study in treatment-naive BC patients 
receiving one dose of anti-PD1. b, Uniform Manifold Approximation and Projection (UMAP) map of 175,942 cells color-coded for the indicated cell 
type. pDC, plasmacytoid dendritic cell. c, Number of expanded clonotypes in on- versus pre-treatment biopsies using three definitions (Methods). Prop, 
proportion; freq, frequency (see main text). d, Relative contribution of each cell type (in %) pre- (upper) and on-treatment (lower), comparing Es (patients 
with clonotype expansion, n = 9) versus NEs (patients with limited or no clonotype expansion, n = 20). e, Subclustering of T/natural killer (NK) cells into 
14 phenotypes, as indicated by the color-coded legend. We identified naive (CD4+ and CD8+ TN), regulatory (CD4+ TREG), effector/memory (CD4+ and 
CD8+ TEM), recently activated effector/memory (CD8+ TEMRA), tissue-resident memory (CD8+ TRM), experienced (CD4+ and CD8+ TEX) and proliferating 
T cells. We identified gamma-delta (γδ) T cell clusters with semi-invariant T cell repertoires (Vγ9/Vδ2 Tγδ) and with memory features (Tγδ). Two 
clusters represent resting and cytotoxic NK cells (NKrest and NKcyto cells). f, Heatmap of normalized PD1 expression in T/NK cell phenotypes. g, Percentage 
of proliferating T cells (relative to all T cells), comparing Es (n = 9) with NEs (n = 20), pre- and on-treatment. h, Relative contribution of each T cell 
phenotype (in %) pre-treatment comparing Es (n = 9) with NEs (n = 20). i, TCR richness comparing Es (n = 9) with NEs (n = 20), pre- and on-treatment. 
j, Violin plots of PD1 expression by CITE-seq. In d and g–i, exact P values by two-sided Mann–Whitney test or two-sided Wilcoxon matched-pairs signed 
rank test for paired samples (pre- versus on-treatment): *P < 0.05, **P < 0.01, ***P < 0.001. In j, ***P < 0.001 by two-sided Wilcoxon rank sum test and 
Bonferroni-corrected (Seurat). In d and g–i, boxes indicate median ± interquartile range; whiskers show minima and maxima.
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T cell expansion along the CD8+ TEX cell trajectory. Next, we 
generated computationally imputed pseudotime trajectories using 
Slingshot18. TCR richness was highest for CD8+ naive T cells  

(TN cells; Extended Data Fig. 4a), which we considered the root 
of the trajectories. Similar to others19, we observed three distinct 
CD8+ T cell trajectories (Fig. 2a): TN were connected to TEM cells, 
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which branched into three different trajectories to form TEX1 and 
TEX2 cells, resident-memory CD8+ T cells (TRM) and activated effec-
tor/memory T cells (TEMRA cells)19. TCR richness decreased along 
the trajectories, and clonotypes were often shared between subse-
quent T cell phenotypes (Fig. 2b and Extended Data Fig. 4a,b). RNA 
velocity analysis confirmed these trajectories, while profiling of 
marker genes confirmed their functional annotation (Fig. 2c,d and 
Extended Data Fig. 4c). TEX cells were more frequent at the end of 
the trajectory in Es versus NEs, both pre- and on-treatment (Fig. 2e 
and Extended Data Fig. 4d). The difference was more pronounced 
on- versus pre-treatment in Es. Consequently, TEX cells from Es 
on-treatment were characterized by more ‘pronounced effector 
activity’ and ‘transient/early exhaustion’ (Extended Data Fig. 4e). 
Increased cytotoxicity in Es was confirmed by CITE-seq based on 
expression of LAMP1, a marker of T cell degranulation (Extended 
Data Fig. 4f)20. In NEs, TEM cells mainly resided midway in the tra-
jectory, suggesting T cell effector function ablation in NEs.

TCR richness was lower in Es than in NEs in all trajectories  
(Fig. 2e). Along the TRM and TEMRA trajectories there was no decrease 
in richness, while along the TEX trajectory richness decreased,  
particularly in Es. Moreover, decreases were more pronounced  
on- versus pre-treatment, reflecting ongoing T cell expansion 
induced by anti-PD1. Cell cycle scores also increased along the TEX 
trajectory in Es and were higher on- versus pre-treatment, especially 
at the end (Extended Data Fig. 4g). Finally, we discerned expanding 
versus non-expanding T cells (irrespective of their E or NE status) 
along the trajectories (Fig. 2e). This confirmed that expanding TEX 
cells were enriched towards the end of the trajectory, especially 
on-treatment.

T cell expansion along CD4+ TH1 and TFH cell trajectories. In 
CD4+ T cells (TREG excluded), additional phenotypic heterogene-
ity was identified with Slingshot. Experienced TEX cells were split 
into type-1 helper (TH1) and follicular helper (TFH) cells (Fig. 2f 
and Extended Data Fig. 4h). Although immune-checkpoint mark-
ers (PDCD1, CTLA4) were highly expressed in both TH1 and TFH 
cells, they differed in the expression of TH1- (IFNG, GZMB) and 
TFH-specific (BCL6, CXCR5) markers. Slingshot identified a trajec-
tory starting in TN1 cells, progressing towards TN2 cells, followed by 
TEM1–3 cells, then separating into trajectories involving either TH1 or 
TFH cells. Clonotype sharing was highest between subsequent phe-
notypes, while RNA velocity independently confirmed these trajec-
tories (Fig. 2g,h and Extended Data Fig. 4i,j). Profiling of marker 
genes and related TFs along trajectories confirmed their functional 
annotation (Fig. 2i). TH1 and TFH cells in NEs remained in early 
pre-effector/memory states, both pre- and on-treatment treatment 
(Fig. 2j and Extended Data Fig. 4k). By contrast, in Es they both 

accumulated at the end of the trajectory. Consequently, expression 
of T cell activity and early exhaustion markers were increased in TH1 
and TFH cells from Es on-treatment (Extended Data Fig. 4l). TCR 
richness decreased towards the end of the trajectories (Fig. 2j), espe-
cially in TH1 cells from Es, while proliferation increased towards the 
end of the trajectory in Es on-treatment (Extended Data Fig. 4m). 
When comparing expanding versus non-expanding CD4+ T cells 
along the trajectories, both TH1 and TFH cells were strongly enriched 
towards the end of the trajectory, especially in Es on-treatment  
(Fig. 2j). Overall, these data indicate that TH1 and TFH trajectories 
substantially contribute to clonotype expansion, suggesting they 
support the ongoing effector function of CD8+ TEX cells.

Gene expression changes during T cell expansion. We identified 
five sets of differentially expressed genes (DEGs) along the CD8+ 
TEX trajectory. A first set, consisting of naive T cell markers (CCR7, 
LEF1) decreased along the trajectory, while two sets, consisting of 
(early) activation genes (GZMK, GZMM, GZMA, NKG7), increased 
halfway through the trajectory, but then decreased. Two other 
sets increased towards the end of the trajectory and were charac-
terized by effector (IFNG), cytotoxicity (GZMB, PRF1), early and 
general exhaustion (PDCD1, CTLA4, ENTPD1; Fig. 3a) markers. 
In each gene set, we identified several genes previously unidenti-
fied as T cell markers (for example, INPP5F and GPR25 as differ-
entiated TEX markers, Fig. 3a). Although trajectories allocate cells 
with a similar expression to the same pseudotime, we observed that 
some genes were differentially expressed between E and NE trajec-
tories. For example, effector and cytotoxic-activity-related genes 
(PRF1, GZMB, IFNG), CTLA4 and TOX2 were consistently higher 
in Es (Fig. 3b). TradeSeq identified 390 such DEGs (Supplementary 
Dataset 3), including RUNX3 and its co-factor CBFB, which were 
decreased in NEs (Fig. 3b). Pathway analyses revealed upregula-
tion of interferon (IFN) responses and downregulation of oxidative 
phosphorylation in Es (Fig. 3c,d). Along the CD4+ TH1 trajectory, 
we similarly identified five gene sets (Fig. 3e) and 499 DEGs when 
comparing Es versus NEs (Supplementary Dataset 4), includ-
ing potential TH1 markers such as ZEB2 (Fig. 3f). Similar to CD8+ 
T cells, RUNX3 and CBFB were reduced in NEs, while IFN-α/γ 
responses were increased in Es (Fig. 3f–h). Hence, gene expression 
profiling along trajectories identified markers or pathways differen-
tially expressed or activated between Es and NEs.

Expression signatures in T cells predict T cell expansion. We 
next identified DEGs between T cells that expand versus T cells 
that do not expand pre-treatment (Fig. 4a, Extended Data Fig. 5a,b 
and Supplementary Dataset 5). Non-expanding T cells were more 
naive (LEF1, SELL, TCF7), while expanding T cells exhibited high 

Fig. 2 | Trajectory analysis of CD8+ and CD4+ T cells according to T cell expansion. a, Pseudotime trajectories for CD8+ T cells based on Slingshot, 
showing three trajectories (TRM, TEX and TEMRA), color-coded for CD8+ T cell phenotypes (left), pseudotime (middle) and number of clonotypes detected 
(right). b, Barplot showing the shared TCR weight for the indicated CD8+ T cell phenotype with all other phenotypes, illustrating that subsequent 
phenotypes share the most TCRs. c, RNA velocity analysis on CD8+ T cell phenotypes independently confirming the three trajectories. d, Plot of marker 
and functional genes along the CD8+ T cell trajectories. TF, transcription factor. e, Densities and clonotype richness along the CD8+ trajectories pre- and 
on-treatment. The density plots reflect the relative number of T cells separately for E versus NE (upper) or the relative number of expanding versus 
non-expanding T cells (lower) along the CD8+ trajectories, pre- and on-treatment. TCR clonotype richness (middle) along the CD8+ trajectories is 
stratified for E versus NE. f, Pseudotime trajectories for CD4+ T cells based on Slingshot, showing two trajectories (TH1, TFH), color-coded for CD4+ T cell 
phenotypes (left), pseudotime (middle) and number of clonotypes detected (right). g, Barplot showing shared TCR weight for the indicated CD4+ T cell 
phenotype with all other phenotypes. The high amount of TCR sharing observed between TH1 and TFH cells could be due to type-conversion between both 
phenotypes or because they share common precursor cells. h, RNA velocity analysis on CD4+ T cell phenotypes (excluding TREG). i, Plot of marker and 
functional genes along the CD4+ trajectories. j, Densities and TCR richness along the CD4+ trajectories pre- and on-treatment. The density plots reflect 
the relative number of T cells separately for E versus NE (upper) or the relative number of expanding versus non-expanding T cells (lower) along the 
CD4+ trajectories, pre- and on-treatment. TCR clonotype richness (middle) along the CD4+ trajectories is stratified for E versus NE. P values assessing 
differences on- versus pre-treatment in pseudotime for CD8+ TEX cells, CD4+ TH1 cells and CD4+ TFH cells in Es: P = 2.5 × 10−4, P = 2.5 × 10−14 and P = 0.007; 
in Es versus NEs, pre-treatment: P = 8.8 × 10−59, P = 1.1 × 10−28 and P = 1.2 × 10−21 and on-treatment: P = 6.7 × 10−39, P = 2.2 × 10−103 and P = 5.5 × 10−31.  
Gray shading in d and i represents 95% confidence intervals at any given pseudotime.
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effector function (IFNG), immune cell-homing signals (CXCL13, 
CCL3/4/5), cytotoxicity (GZMB, PRF1, NKG7), antigen presenta-
tion (CD74, HLA-DRB1/5, HLA-DQA2) and immune-checkpoint 

marker expression (PDCD1, HAVCR2, LAG3). ENTPD1 (CD39) 
and ITGAE (CD103), which mark tumor-reactive T cells21,22, were 
also pronounced in expanding T cells. Gene set enrichment analysis  
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(GSEA) on DEGs confirmed these differences (Extended Data  
Fig. 5c,d). The number of expanded clonotypes (per patient) also  
correlated with expression of these genes or their associated pathways  

pre-treatment (Extended Data Fig. 5e and Supplementary Dataset 2).  
Immune-checkpoint markers and CD4+ TH1 activity were most 
predictive for T cell expansion in Es versus NEs pre-treatment 
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(AUC = 0.93–0.96 versus 0.70–0.87 for CD8+ cytotoxicity and 
IFN-γ activity; Fig. 4b). A signature of 50 DEGs in CD4+ T cells for 
Es versus NEs pre-treatment similarly predicted T cell expansion 
(Supplementary Dataset 6 and Extended Data Fig. 5f). CITE-seq 
confirmed that naive T cell markers were higher in NEs than in 
Es, while immune-checkpoint, tumor-reactive and co-stimulatory 
markers were reduced (Fig. 4c and Extended Data Fig. 5g).

When comparing Es with TNBC (n = 5) versus ER+ BC (n = 3), 
the number of expanded clonotypes did not differ. Nevertheless, 
pre-treatment PD1 expression in T cells and the number of prolife
rating T cells were higher in TNBC (Fig. 4d,e and Extended Data  
Fig. 6a,b). Es also exhibited increased expression of CD8+ T cell 
effector function genes, CD4+ TH1 activity and immune-checkpoint 
genes pre-treatment in TNBC (Fig. 4f). DEGs in expanding CD8+ 
T cells from TNBC versus ER+ Es also revealed elevated effector 
function (Extended Data Fig. 6c), while in expanding CD4+ T cells, 
expression of antigen presentation genes (HLA-C, HLA-DRB5), 
GZMB and ENTPD1 was increased (Extended Data Fig. 6d). 
Conversely, in ER+ Es, expanding CD4+ and CD8+ T cells over
expressed naive (SELL, IL7R) and pre-effector (GZMK) markers, 
suggesting that although the extent of T cell expansion was similar, 
they were less differentiated compared to TNBC.

T cell expansion after neoadjuvant chemotherapy and anti-PD1. 
Next, we analyzed pairs of pre- and on-treatment biopsies (n = 11) 
from patients receiving neoadjuvant chemotherapy before anti-PD1 
(cohort 2). Using the same analysis strategy as in cohort 1, we desig-
nated three patients as Es (Fig. 4g and Extended Data Fig. 6e). T cells 
and pDCs were increased on-treatment, but not pre-treatment  
in Es, while PD1 was increased both pre- and on-treatment in Es 
(Fig. 4h–i and Extended Data Fig. 6f,g). Subclustering of T cells con-
firmed that CD4+ and CD8+ TEX cells were more frequent in Es, both  

pre- and on-treatment (Fig. 4j and Extended Data Fig. 6h). 
Comparing expanding and non-expanding T cells pre-treatment 
identified similar DEGs or pathways as in patients receiving only 
anti-PD1 (Extended Data Fig. 6i). The same genes or pathways also 
predicted T cell expansion (Supplementary Dataset 7). TH1 activity 
and our signature of 50 DEGs in TH1 cells reliably predicted T cell 
expansion (AUC = 0.958 and 0.917; Extended Data Fig. 6j), con-
firming that CD4+ TH1 cells are also involved in T cell expansion 
when anti-PD1 is combined with neoadjuvant chemotherapy.

Dendritic cells associated with T cell expansion. Dendritic cells 
(DCs) play a central role in regulating the balance between CD8+ 
T cell immunity and tolerance to tumor antigens23. We therefore sub-
clustered 2,410 DCs from patients receiving only anti-PD1 (n = 29) 
to reveal six phenotypes, including conventional type 1 and 2 DCs 
(cDC1, cDC2), plasmacytoid DCs (pDC), Langerhans-like DCs 
(LanghDC), migratory DCs (migDC) and the recently described 
AXL+SIGLEC6+ DCs (ASDC)24,25 (Fig. 5a and Extended Data  
Fig. 7a–c). MigDCs clustered in separate subpopulations: a trans
criptionally active population expressing immunoregulatory mole-
cules (mregDC26; PD-L1/L2) and a quiescent population expressing 
migratory marker genes (CCR7, CCL19; Extended Data Fig. 7d,e).

PD-L1 (CD274) and PD-L2 (PDCD1LG2) were increased in DCs 
from Es versus NEs (Fig. 5b). Immunohistochemistry confirmed 
that PD-L1 was higher in Es, both pre- and on-treatment (Fig. 5c). 
Within the DC subtypes, PD-L1 was uniquely expressed by mreg-
DCs (Fig. 5d). Relative DC frequencies pre-treatment did not differ 
between Es and NEs, except for mregDCs, which were enriched in 
Es pre-treatment (Fig. 5e and Extended Data Fig. 7f). Pre-treatment 
DEGs in Es versus NEs revealed increased levels of genes involved 
in IFN responsiveness (STAT127, IFI27, ISG20), DC differen-
tiation (ETV628), antigen cross-presentation (HLA genes) and  

Fig. 3 | Differentially expressed genes in CD8+ TEX and CD4+ TH1 trajectories. a, Gene expression dynamics along the CD8+ TEX trajectory. Genes cluster 
into five gene sets, each characterized by specific expression profiles, as depicted by a selection of marker genes characteristic for each cluster (left). 
For each gene cluster (indicated by different colors), expression of two novel genes along the trajectory is shown (right). b, Plots showing the expression 
dynamics of 18 marker or functional genes (rows 1–3) and six DEGs previously not implicated in T cell biology and identified by TradeSeq (row 4) between 
Es and NEs pre-treatment along the trajectory. Marker genes that were differentially expressed by TradeSeq are indicated in bold. c, Plots showing hallmark 
pathway activity scores by AUCell along the CD8+ TEX trajectory comparing Es and NEs. d, GSEA on DEGs in Es versus NEs along the CD8+ TEX trajectory 
using hyperR for REACTOME and hallmark gene sets. e, Gene expression dynamics along the CD4+ TH1 trajectory. Genes cluster into five gene sets, 
each characterized by specific expression profiles, as depicted by a selection of marker genes characteristic for each cluster (left). For each gene cluster 
(indicated by different colors), expression of two novel genes along the trajectory is shown (right). f, Plots showing nine DEGs previously not implicated 
in T cell biology and identified by TradeSeq between E and NEs along the CD4+ TH1 trajectory. g, Plots showing hallmark pathway activity scores by AUCell 
along the CD4+ TH1 trajectory comparing Es and NEs. h, GSEA on DEGs for Es versus NEs along the CD4+ TH1 trajectory using hyperR for REACTOME and 
hallmark gene sets. Gray shading in b, c, f and g represents the 95% confidence interval at any given pseudotime.

Fig. 4 | Expanding versus non-expanding T cells in BC and in BC subtypes. a, Volcano plot showing DEGs in T cells comparing expanding (n = 910 
cells) and non-expanding (n = 16,144 cells) T cells pre-treatment. Black dots on the volcano plot: P = NS (not significant); gray, P < 0.05; red, P < 0.05 
and absolute log2FC ≥ 0.5 (FC, fold change). P values were obtained by the model-based analysis of single-cell transcriptomics (MAST) test and 
Bonferroni-corrected (Seurat). Genes in bold are discussed in the main text. b, Receiver operating characteristic (ROC) curves for eight genes (left) and 
six signature module scores (right), calculated based on scRNA-seq data comparing Es and NEs pre-treatment. AUC values and 95% confidence intervals 
indicating the predictive effect are indicated. c, Violin plots showing expression of the indicated proteins by CITE-seq, confirming differences observed by 
scRNA-seq. d, Number of expanded clonotypes in Es (n = 8) and NEs (n = 19) comparing ER+ (n = 15; Es: n = 3) versus triple-negative breast cancer (TNBC, 
n = 12; Es: n = 5). No significant difference was observed between ER+ Es and TNBC Es. e, Boxplot showing average PD1 expression in T cells comparing ER+ 
(n = 3) and TNBC (n = 5) Es pre-treatment. f, Boxplots showing average CD8+ IFN-γ response signature, CD4+ TH1 activity and CD4+ immune-checkpoint 
module scores comparing ER+ (n = 3) and TNBC (n = 5) Es pre-treatment. g, Number of expanded clonotypes in on- versus pre-treatment biopsies from 
11 patients receiving neoadjuvant chemotherapy followed by a single dose of anti-PD1 (replication cohort or cohort 2) according to three definitions of 
expanded clonotypes. h, Relative contribution of each cell type (in %) in on-treatment biopsies within the replication cohort comparing Es (n = 3) and 
NEs (n = 8). i, Heatmap of normalized PD1 expression (replication cohort) showing increased expression in Es, both pre- and on-treatment. j, Relative 
contribution of each T cell phenotype (in %) in pre-treatment biopsies (replication cohort) comparing Es (n = 3) and NEs (n = 8). In d–f, h and j, exact  
P values by Mann–Whitney test or Wilcoxon matched-pairs signed rank test for paired samples (pre- versus on-treatment) are shown (two-sided (d–f) or 
one-sided (h,j)): *P < 0.05, **P < 0.01, ***P < 0.001. In c, ***P ≤ 0.001 by two-sided Wilcoxon rank sum test and Bonferroni-corrected (Seurat). In d–f, h and 
j, boxes indicate median ± interquartile range; whiskers indicate minima and maxima.
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processing (LY7529, TAP130), and T cell co-stimulation (CD80)  
(Fig. 5f, Extended Data Fig. 7g and Supplementary Dataset 8). 
pDCs, ASDCs and mregDCs were more frequent in Es on-treatment  

(Fig. 5e,g). CXCL9 and CXCL10, which are important for T cell 
migration towards the tumor31, and genes associated with IFN 
responsiveness and antigen presentation were elevated in Es  
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versus NEs on-treatment (Fig. 5f). Overall, this suggests that DCs 
are immunoresponsive in Es, both pre- and on-treatment, and sup-
port T cell function.

Macrophages expressing PD-L1/L2 correlate with T cell expan-
sion. Given that macrophages also act as mediators of tumor 
immunity, we subclustered the 7,952 myeloid cells into 10 pheno-

i Macrophages E vs NE pre-treatment 
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types, including two monocyte (C1 and C2) and eight macrophage  
(C3–C10) clusters (Fig. 5h). C1_CD14 monocytes represented clas-
sical monocytes (high CD14, S100A8/9), while the less-abundant 
C2_CD16 monocytes were non-classical (low CD14, high FCGR3A 
(CD16), CDKN1C, MTSS1) (Extended Data Fig. 7h–j). In addition 
to previously described macrophage phenotypes16, we identified 
C7_MT1G macrophages (expressing metallothioneins regulating 
redox state32) and hypoxic C8_SLC2A1 macrophages.

Similar to DCs, macrophages expressed PD-L1 and PD-L2. 
Macrophages were, however, more abundant than DCs (Extended 
Data Fig. 7k). In pre-treatment macrophages, PD-L1/L2 was sig-
nificantly higher in Es than in NEs (Fig. 5b), while several cyto-
kines (CXCL9, CXCL10, CCL8) and type I/II IFN-responsive genes 
were upregulated (Fig. 5i, Extended Data Fig. 7l and Supplementary 
Dataset 9). By contrast, CX3CR1 and C3 were downregulated. 
CITE-seq confirmed increased expression of co-stimulatory markers  
in Es versus NEs pre-treatment (Fig. 5j). At the subcluster level, most 
macrophage phenotypes expressed PD-L1 (Fig. 5k). C7_CX3CR1  
macrophages were depleted in Es pre-treatment, an effect that 
became more pronounced on-treatment (Fig. 5l). By contrast,  
C3_CCR2 macrophages, which represent pro-inflammatory macro-
phages based on M1 marker expression (CXCL9/10, SOCS3), were 
enriched in Es on-treatment (Fig. 5l and Extended Data Fig. 7j).

Cancer cells are affected by anti-PD1 in tumors with T cell 
expansion. Because the activity of T cells relies on tumor antigen 
presentation by cancer cells, we also investigated the cancer cell com-
partment. Cancer cell numbers decreased on- versus pre-treatment 
in Es (−16.83 ± 6.67%; P = 0.039 versus −6.53 ± 4.8 in NEs; P = NS, 
Fig. 6a). Expression of the proliferation marker MKI67 was also 
reduced by scRNA-seq, but this was not confirmed by Ki67 immu-
nohistochemistry (Extended Data Fig. 8a). Although we failed to 
detect PD-L1 in cancer cells, we observed that numerous antigen 
presentation major histocompatibility complex (MHC) class I/II 
genes were downregulated in NEs versus Es, both by scRNA-seq 
and CITE-seq (Fig. 6b,c). Pathways related to antigen processing 
or presentation, and IFN-γ response signaling, were upregulated in 
Es versus NEs pre-treatment (Extended Data Fig. 8b). Comparing 
Es pre- versus on-treatment confirmed an ongoing anti-tumor 
immune response, with cell proliferation, proteolysis, cell death, 
immune signaling and cytotoxicity pathways enriched in cancer 
cells from Es on-treatment (Fig. 6d and Extended Data Fig. 8c–f).

Immune environment associated with T cell expansion. Finally, 
we explored which cell types and phenotypes pre-treatment were 
correlated with T cell expansion. The relative frequency of CD4+ 
or CD8+ TEX cells, proliferating T cells, migDCs, macrophage  

phenotypes expressing PD-L1, including CCR2+ and MMP9+ mac-
rophages, correlated positively with T cell expansion. By contrast, 
naive or effector/memory T cells, and inhibitory (CX3CR1+) macro-
phages, were inversely correlated (Fig. 6e). Similarly, pre-treatment 
expression of PD1 in T cells, PD-L1/2 in macrophages, MHC class 
I/II genes in cancer cells and T cell clonality correlated positively 
with T cell expansion, while TCF7 and SELL in T cells, or CX3CR1 
and C3 in macrophages, correlated inversely (Extended Data Fig. 9).

We also predicted receptor–ligand interactions using 
CellphoneDB33. First, we calculated the interactions between 
cell types separately for Es and NEs, both pre- and on-treatment 
(Extended Data Fig. 10a). We observed more interaction possibili-
ties in Es than NEs pre-treatment, particularly between cancer cells, 
DCs, monocytes/macrophages and T cells (Fig. 6f and Extended 
Data Fig. 10b). Specific interactions between CD8+ or CD4+ T cells 
and other immune cells in Es included co-stimulatory (CD28-CD80, 
ICOS-ICOSLG) or co-inhibitory (PDCD1-CD274/PDCD1LG2 
(PD1-PD-L1/2), HAVCR2-LGALS9 (TIM3-Galectin9), 
CTLA4-CD80/CD86) interactions (Fig. 6g,h and Supplementary 
Dataset 10). By contrast, CD8+ T cells showed suppressive interac-
tions with myeloid cells (LAIR1-LILRB434, TGFBR3-TGFB135) and 
pro-apoptotic interactions (TNFSF10-TNFRSF10A) with mono-
cytes/macrophages and cancer cells in NEs pre-treatment, while 
T cell homing interactions (CXCR3-CXCL9/CXCL10/CXCL11) 
were lacking (Fig. 6g and Extended Data Fig. 10c). On-treatment, 
we observed a significant reduction in the number of interactions 
between cancer cells and other cell types in Es (Extended Data 
Fig. 10d,e). Between cancer cells and CD8+ T cells, several new 
interactions suggestive of T cell recruitment were observed in Es 
(CXCL10_CXCR3, ICAM1_LFA1), while co-stimulatory interac-
tions (TNFRSF9-TNFSF9) were seen between CD8+ T cells and 
DCs (Extended Data Fig. 10c,f). Overall, these data depict an inter-
active immune environment in pre-treatment biopsies that corre-
lates with T cell expansion following anti-PD1 treatment.

Discussion
Here, we have unbiasedly assessed intratumoral changes in 
BC patients receiving ICB. Others have already characterized 
treatment-naive BC microenvironments at single-cell resolu-
tion36–38. By accurately monitoring how anti-PD1 affects immune 
cells and vice versa how immune cells pre-treatment correlate with 
T cell expansion, we complement these efforts in the context of ICB.

Because anti-PD1 was delivered in a window-of-opportunity set-
ting, we could not explore whether T cell expansion translates into 
clinical benefit. However, in melanoma, peripheral T cell expansion 
occurring within three weeks after start of treatment correlates with 
improved clinical response to ICB six months later39,40. Because the 

Fig. 5 | Dendritic cells and macrophages expressing PD-L1 correlate with T cell expansion. a, UMAP depicting six color-coded DC phenotypes. The 
migratory DCs could be further divided into two clusters of quiescent migDCs and mregDCs; the mregDC cluster is indicated with an arrow. b, Heatmap 
showing the expression of PD1 ligands (PD-L1/L2) in all cell types. Expression is highest in DCs, macrophages and monocytes in Es. c, Boxplot showing 
increased PD-L1 positivity based on immunohistochemistry as a modified proportion score (MPS) in Es (n = 8) and NEs (n = 18). d, Heatmap showing 
expression of PD1 ligands (PD-L1/L2) in all DC phenotypes. Expression is highest in mregDCs. e, Relative contribution of DCs (left) and mregDCs 
(right) to all cells (in %) both pre- and on-treatment, comparing Es (n = 9) and NEs (n = 20). f, Heatmap showing the expression of genes involved in 
IFN responsiveness (IFN-γ and IFN-α response genes), immune cell attraction, co-stimulation, antigen presentation and processing, and differentiation. 
g, Relative contribution of each DC phenotype (in %) to all cells on-treatment, comparing Es (n = 9) and NEs (n = 20). h, UMAP depicting 10 different 
myeloid cell phenotypes. i, Volcano plot showing DEGs in macrophages pre-treatment comparing Es and NEs. Black dots, P = NS; gray, P < 0.05; red, 
P < 0.05 and absolute log2FC ≥ 0.5. P values were obtained by MAST test and are Bonferroni-corrected (Seurat). Genes in bold are discussed in this paper. 
j, Violin plots showing differential expression of the indicated proteins by CITE-seq in myeloid cells in Es and NEs pre-treatment. k, Heatmap showing 
expression of PD1 ligands (PD-L1/L2) in each monocyte and macrophage subcluster. l, Relative contribution of each myeloid cell phenotype (in %) in 
pre- (left) and on-treatment (right) biopsies comparing Es (n = 9) and NEs (n = 20). In c, e, g and l, exact P values by two-sided Mann–Whitney test or 
two-sided Wilcoxon matched-pairs signed rank test for paired samples (pre- versus on-treatment) are shown: *P < 0.05, **P < 0.01, ***P < 0.001. In j, 
**P < 0.01, ***P < 0.001 by two-sided Wilcoxon rank sum test and Bonferroni-corrected (Seurat). In c, e, g and l, boxes show the median ± interquartile 
range; whiskers indicate minima and maxima.
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number of cancer cells decreased on-treatment in Es, this suggests 
that BC T cell expansion might also be associated with clinical ben-
efit in BC. We additionally observed that the majority of expanding 
T cell clonotypes were already detected pre-treatment. By contrast, 
Yost et al. found that in melanoma, expanded clonotypes were 
not detectable pre-treatment14. A difference between both stud-
ies is that we profiled on-treatment biopsies ~9 days after starting 
anti-PD1 treatment, whereas in the study by Yost et al. clonotypes 
were assessed ~9 weeks after start of treatment. This suggests that 
pre-existing clonotypes expand immediately after anti-PD1, while 
several weeks later novel clonotypes start to arise, possibly repre-
senting immune responses against secondary antigens arising due 
to ongoing cell death (a process referred to as antigen spread41).

Using trajectory inference, we observed that CD8+ TEX cells 
expanded along a specific trajectory in Es, exhibiting increased acti-
vation and cytotoxic effector function. Interestingly, CD4+ TEX cells, 
which could be separated into TH1 and TFH cells, also contributed to 
clonal expansion and are likely to also contribute to ICB response. 
Indeed, studies in mice show that CD4+ TH1 cells can enhance CD8+ 
T cell infiltration42, while TFH cells drive germinal center formation 
and subsequent B cell maturation in tertiary lymphoid structures, 
which can influence the response to ICB43–45. Overall, these data 
illustrate that trajectories are powerful in studying gene expression 
changes during treatment. It should be stressed, however, that cells 
originally derived from a tissue but now residing elsewhere will be 
missed, while unrelated cells infiltrating the tissue will become part 
of the trajectory. Trajectories should therefore not be interpreted as 
actual differentiation lineages.

In metastatic BC, PD-L1 positivity in stromal cells predicts bene-
fit from atezolizumab combined with chemotherapy4, while amplifi-
cation of the PD-L1 locus in tumors also associates with therapeutic 
benefit5. We also observed that PD-L1 was associated with T cell 
expansion, albeit only modestly. By contrast, TILs could not reliably 
predict T cell expansion, whereas PD1 and the relative abundance 
of CD8+ or CD4+ TEX cells emerged as highly predictive markers for 
T cell expansion. Gene signatures of immune-checkpoint markers 
or CD4+ T cell activation were also highly predictive, both when 
anti-PD1 was given to treatment-naive BC or following neoadju-
vant chemotherapy. Interestingly, expression of these markers was 
more pronounced in TNBC than in ER+ BC, possibly explaining 
why ICB has so far provided the most therapeutic benefit in TNBC.

Our data also suggest molecular targets whose modulation 
could be synergistic with anti-PD1. For example, we observed how 
RUNX3, which is required for T cell cytotoxicity46, was downregu-
lated in CD4+ and CD8+ TEX cells of NEs. Hence, reactivation of this 
pathway could sensitize tumors to anti-PD1. Similarly, we observed 
potential suppressive interactions with T cells from NEs (for exam-
ple, LAIR1-LILRB4). Numerous genes were also upregulated along 
CD8+ TEX and CD4+ TH1 trajectories. Several of these (for example, 
INPP5F or ZEB2) have not previously been associated with ICB 
and could represent potential immunoregulatory targets. Finally, 
increased frequencies of PD-L1-expressing macrophage populations  

(for example, CCR2+ or MMP9+ macrophages) or of T cell inhibi-
tory CX3CR1+ macrophages47,48 were observed, respectively, in Es 
or NEs. Interestingly, CX3CR1+ macrophages are ablated during 
ICB in a sarcoma tumor model49, while genetic ablation of CX3CL1, 
the ligand of CX3CR1, also inhibited tumor growth and shifted 
tumor-associated macrophages towards an anti-tumor M1 pheno-
type50. C7_CX3CR1 macrophages also expressed complement C3, 
which suppresses the infiltration and function of CD8+ and CD4+ 
T cells51,52. Overall, this suggests that inhibition of both CX3CR1 or 
C3 might be therapeutically beneficial.

In conclusion, we present a map of the pre-treatment immune 
environment that is associated with T cell expansion after neo
adjuvant anti-PD1 in patients with BC. This resource could pro-
vide insights into potential predictive biomarkers of clinical benefit 
post-ICB. Follow-up studies involving multiple cycles of anti-PD1 
combined with chemotherapy are needed, however, to confirm 
associations between these biomarkers and clinical responses and 
to further explore therapeutic targeting of candidate proteins for 
synergistic use with anti-PD1.
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Methods
Patient population and clinical study. The protocol of this single-center,  
open-label, non-randomized phase 0 study (BioKey) was approved by the local 
medical ethics committee of the University Hospitals Leuven (S60100) and is 
provided as a Supplementary Protocol. The primary goal of the study was to  
evaluate whether one dose of pembrolizumab was able to alter biomarkers related 
to intratumoral immunity and proliferation in early breast cancer. The study was  
conducted according to EU legislation regarding ethical regulations and was 
registered online (NCT03197389). All 54 patients provided written informed  
consent. We only included patients with a non-metastatic operable newly diagnosed  
primary invasive carcinoma of the breast that was histologically confirmed as ER−/
PR− or ER+ BC with a primary tumor size of >1 cm, measured by any clinical 
examination, including mammography, ultrasound or magnetic resonance imaging 
(detailed clinical information for each patient is provided in Supplementary Tables 1  
and 2). The study consisted of two cohorts. The first cohort involved 39 patients 
scheduled for upfront surgery. Patients had either TNBC, HER2+ (ER−/PR−) or 
ER+/PR± (HER2±) BC. The second cohort consisted of 15 patients who received 
neoadjuvant chemotherapy and who had clear signs of residual tumor on imaging 
after three months of neoadjuvant chemotherapy (that is, estimated residual tumor 
size of at least 10 mm). Patients either had TNBC, ER−/PR−/HER2+ tumors or 
ER+/PR±/HER2± tumors. Chemotherapy was combined with anti-HER2 therapy 
if the tumor was HER2+. In both cohorts, a single dose of 200 mg pembrolizumab 
(Keytruda or anti-PD1) was delivered before surgery in a window-of-opportunity 
setting. Fresh tumor tissue was collected from these patients before (by needle 
biopsy) and 7–15 (9 ± 2) days after (by resection) pembrolizumab.

Overall, we analyzed 29 patients from the first cohort (treatment-naive 
early BC) and 11 patients from the second cohort (BC treated with neoadjuvant 
chemotherapy) by scRNA-seq and scTCR-seq. We did not include 14 patients for 
the following reasons: two patients were excluded because immediately after study 
inclusion they refused to have a biopsy taken pre-treatment. Another two patients 
were not included because we processed tumor tissues with the 3′-scRNA-seq kit 
from 10x Genomics, which is not compatible with scTCR-seq. We thus could not 
classify these patients as Es or NEs. For another 10 patients, we failed to obtain 
high-quality paired biopsies for either the first or second biopsy due to technical 
limitations of the scRNA-seq technology. Specifically, this was because (1) an 
insufficient number of cells were obtained after tissue dissociation (n = 2),  
(2) after quality filtering of the scRNA-seq data, <100 cells were retained (n = 4), 
(3) there was limited to no overlap in barcodes between scRNA-seq and scTCR-seq 
data (n = 3) or (4) the on-treatment biopsy contained an unexpected increase in 
fibroblasts (that is, 50% versus 4% in the pre-treatment biopsy), suggesting that 
the resection biopsy was taken in the scar tissue of the first biopsy or in a necrotic 
area. Of these ten patients, seven were treatment-naive prior to receiving anti-PD1 
(cohort 1), while three patients received prior chemotherapy (cohort 2).

TIL scoring and immunohistochemistry. Stromal tumor-infiltrating lymphocytes 
(sTILs) were evaluated according to the guidelines53 of the International 
Immuno-oncology Biomarkers Working Group on hematoxylin and eosin (H&E) 
stained slides. Immunohistochemical stains were performed on 5-μm-thick 
sections using an automated immunostainer (Bond Max Autostainer, Leica) 
according to the manufacturer’s instructions. A monoclonal antibody was used for 
Ki67 (clone MIB-1, Agilent) and estrogen receptor (ESR1; MA5-14501, Thermo 
Fisher) staining. The proliferation marker Ki67 was scored semi-quantitatively 
by evaluating the nuclear expression of MIB-1 in tumor cells. For ER status, 
we calculated the Allred score, which is based on the estimated proportion of 
positively stained tumor cells (0, none; 1, <1%; 2, 1–10%; 3, 11–33%; 4, 34–66%; 
5, >66%) combined with an intensity score, which represents the average intensity 
of positive tumor cells (0, none; 1, weak, 2, intermediate; 3, strong). PD-L1 (Merck 
22C3 antibody) immunohistochemistry was performed by Qualtek Molecular 
Laboratories as per an agreement with Merck. QualTek provided a modified 
proportion score indicating the proportion of PD-L1-expressing tumor cells and 
mononuclear inflammatory cells within tumor nests54,55.

Sample collection and processing. Biopsies were obtained via diagnostic needle 
biopsy with either a 14-G or 18-G needle (pre-treatment) or surgical resection 
(on-treatment) and were immediately subjected to single-cell dissociation on ice. 
From each patient at least two cylinders were collected; one was fixed in formalin 
and embedded in paraffin for standard histopathology assessment and the other 
was processed for scRNA-seq. Briefly, the tissue samples were first mechanically 
dissociated using a scalpel, then enzymatically dissociated in digestion medium 
(2 mg ml−1 Collagenase P (Sigma Aldrich) and 0.2 mg ml−1 DNAse I (Roche) in 
DMEM (Thermo Fisher Scientific)). Red blood cells were removed from the cell 
suspension using red blood cell lysis buffer (Roche), and the cells were filtered 
using a 40-µm Flowmi tip strainer (VWR). The number of living cells was 
determined using a LUNA automated cell counter (Logos Biosystems).

Single-cell RNA-sequencing and T cell repertoire profiling. We performed 
single-cell TCR-seq and 5′ gene expression profiling on the same single-cell 
suspension using the Chromium Single Cell V(D)J Solution from 10x Genomics 
according to the manufacturer’s instructions. Up to 5,000 cells were loaded onto a 

10x Genomics cartridge for each sample. Cell-barcoded 5′ gene expression libraries 
were sequenced on an Illumina NextSeq and/or NovaSeq6000 system, and mapped 
to the GRCh38 human reference genome using CellRanger (10x Genomics). V(D)
J enriched libraries were sequenced on an Illumina HiSeq4000 system and TCR 
alignment and annotation were achieved with CellRanger VDJ (10x Genomics).

Single-cell gene expression analysis. Raw gene expression matrices were generated  
using CellRanger (10x Genomics) and analyzed using the Seurat56,57 v3 R package. 
All cells expressing <200 or >6,000 genes were removed, as well as cells that 
contained <400 unique molecular identifiers (UMIs) and >15% mitochondrial 
counts. Samples were merged and normalized. On average, we detected 1,721 genes 
per cell and 6,021 unique transcripts per cell after filtering. Because every cell has  
a unique barcode, scRNA-seq data could be linked with the scTCR-seq data.

scRNA-seq clustering leading to cell types. The default parameters of Seurat were 
used, unless mentioned otherwise. Briefly, for the clustering of all cell types, 2,000 
variable genes were identified and principal component analysis (PCA) was applied 
to the dataset to reduce dimensionality after regressing for the number of UMIs 
(counts), percentage mitochondrial genes and cell cycle (S and G2M scores were 
calculated by the CellCycleScoring function in Seurat). The 20 most informative 
principal components (PCs) were used for clustering and Uniform Manifold 
Approximation and Projection for dimension reduction (UMAP)58,59. Clusters 
in the resulting two-dimensional UMAP representation consisted of distinct cell 
types, which were identified based on the expression of marker genes. DEGs that 
functionally characterized the clusters were defined by the MAST test implemented 
in the FindAllMarkers function from Seurat.

scRNA-seq clustering leading to cell subtypes. To subcluster T cells from 
pre- and on-treatment samples, we used the integration pipeline of Seurat. We 
regressed for the following confounding factors: number of UMIs (counts), 
percentage of mitochondrial genes, individual patient, cell cycle and interferon 
response score (calculated by the AddModuleScore function in Seurat using the 
gene set BROWNE_INTERFERON_RESPONSIVE_GENES from the Molecular 
Signatures Database or MSigDB v6.2). Regressing for cell cycle and IFN response 
scores was needed, because failure to regress for them revealed a proliferative and 
IFN-high cluster, which consisted of multiple heterogeneous T cell phenotypes 
(Supplementary Fig. 1a–g). When regressing for both variables, we did not identify 
an IFN-driven subcluster, but still identified a proliferative cluster, which was less 
heterogeneous with respect to T cell subclusters, and all T cells homogeneously 
expressed high PD1 levels. For myeloid cells, a specific clustering approach 
was used: first, myeloid cell subclustering identified cDC subclusters based on 
marker gene expression (cCDs: CLEC9A, XCR1, CD1C, CCR7, CCL17, CCL19; 
Langerhans-like: CD1A, CD207), as previously described16. These DC clusters 
were excluded from subsequent subclustering efforts, and instead were merged 
with pDCs for subclustering of DCs, using a similar approach as for T cells with 
the exception that regression for the IFN response was not needed. All phenotypes 
were shared between patients, pre- versus on-treatment, and between BC subtypes 
(Supplementary Fig. 2a–c).

In the second cohort of BC patients receiving neoadjuvant chemotherapy 
followed by one dose of pembrolizumab, the same clustering approach was used. 
However, to subcluster T cells, we used the label transfer pipeline from Seurat. 
Briefly, the annotation of T cells performed in the first cohort served as a reference 
dataset to assign T cells from the queried data to a given T cell phenotype.

Single-cell copy number analysis. Copy number instability was assessed with the 
R package inferCNV (https://github.com/broadinstitute/inferCNV; v1.2.1), which 
is designed to infer copy number alterations from tumor single-cell RNA-seq data. 
This package compares the expression intensities of genes across malignant cells 
and relates this to expression in normal cells. A random subset of T cells, B cells 
and myeloid cells was used as reference, while sex chromosomes were excluded.

Tumor mutation detection and copy number instability. Tumor mutation 
burden was assessed by whole-exome sequencing as described previously60. 
Briefly, raw reads were mapped with BWA (v0.5.9) to the human reference 
genome, duplicate reads were removed, and base recalibration and variant calling 
were performed using GATK 4 (v4.0.5.1) following best practice. Raw variants 
were considered when present with an allelic frequency of over 10% and when 
detected in >2 reads. Somatic variants were identified by removing SNPs present 
in the gnomAD database available on Annovar (version 2017Jul16). The average 
WES sequencing depth was 102 ± 58× and 85 ± 7% of the exome was covered 
over 10×. Copy number instability was assessed by low-coverage sequencing 
as described previously60. Briefly, raw sequencing reads were aligned to the 
human reference genome and duplicates were removed. On average, we obtained 
10,145,027 ± 2,150,566 mapped reads. Next, the mapped reads were counted 
in bins of 50 kb using QDNASeq (v1.14.0) and segmented by ASCAT (v2.5.2). 
Breakpoints, which we defined as a difference in copy number of at least 0.3 
within a chromosome arm, and copy number instability, which we defined as the 
percentage of the genome with a copy number of <1.7 or >2.3, were calculated in 
R version 3.6.
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Trajectory inference analyses. The R package Slingshot18 (v1.4) was used to define 
computationally imputed pseudotime trajectories in T cells. The analyses were 
performed for CD8+ and CD4+ T cells separately, with CD4+ TREG cells excluded 
from CD4+ T cells due to their unique developmental origin. For each analysis, 
PCA-based dimension reduction was performed on DEGs of each phenotype, 
followed by two-dimensional visualization on UMAP. Graph-based clustering 
(Louvain) identified additional heterogeneity for some phenotypes; that is, CD4+ 
TEM cells were split into three subclusters (EM1–3) and TN cells into two subclusters 
(N1–2). Next, this UMAP matrix was fed into Slingshot, considering naive T cells 
as a root state when calculating the trajectories and the pseudotime. These results 
were used to calculate DEGs between trajectories using TradeSeq (v1.4). We 
further adapted the TradeSeq concept to identify DEGs for Es versus NEs within 
the same trajectory by using the patternTest function (applying P < 1 × 10−4 and a 
fold change of >1.5 as threshold), and we clustered genes with similar expression 
patterns using the clusterExpressionPatterns function. For RNA velocity analysis, 
the spliced and unspliced reads were counted using the velocyto.py package 
(v0.17.17) from aligned bam files generated by CellRanger61, and fed into the 
scVelo package (v0.2.2) to calculate RNA velocity values for each gene of each cell. 
The resulting RNA velocity vector was embedded into the UMAP space62.

Differential expression and pathway analysis. DEGs were identified using the 
MAST test with FindMarkers and FindAllMarkers functions in Seurat without a 
threshold for logFC and for expression in a minimum fraction of cells. To identify 
differentially expressed gene sets, the R package GSVA (Gene Set Variation 
Analysis) was used to calculate gene set scores per cell and subsequently the  
R package limma v3.42.1 (linear modeling) to find significantly enriched gene 
sets. For this analysis, the hallmark (referred to as ‘H’) and GO (‘C5’) gene 
sets were used from the MSigDB v6.2 and were exported using the R package 
GSEABase (v1.48.0). The R package hypeR (v1.2.0 and v1.5.0) and GO, hallmark 
and REACTOME gene sets were used for GSEA on DEGs. Only significant genes 
(adjusted P < 0.05) and genes with an avg_logFC higher than log(1.5) or lower than 
−log(1.5) were used.

Gene signatures. To generate a 50-gene signature for CD4+ T cells, a DEG analysis 
between CD4+ T cells of Es and NEs was performed, as described above. A Mann–
Whitney test (wilcox.test in R) was performed to compare the mean expression of all 
CD4+ T cells per patient between Es (n = 9) and NEs (n = 20). All genes upregulated 
in Es with P < 0.05 were selected, and the overlap with genes upregulated according 
to the MAST test (using adjusted P < 0.05) was taken. Immunoglobulin, ribosomal 
and mitochondrial genes were deleted and the 50 genes with the highest fold 
change were selected for the signature. The CD4+ TH1-activity signature was derived 
from Zhang et al.19 by selecting genes upregulated with a ≥2.5 logFC in TH1-like 
T cells. The HALLMARK_INTERFERON_GAMMA_RESPONSE gene set from 
MSigDB v6.2 was used for the IFN-γ response signature. Genes included in the 
cytotoxicity signature are PRF1, GZMB, GZMA, IFNG, NKG7 and GNLY. Genes 
included in the immune checkpoints signature are CTLA4, PDCD1, HAVCR2, 
ENTPD1, TIGIT, LAG3 and BTLA. For correlation and ROC analyses we calculated 
module scores for signatures/pathways using the Seurat function AddModuleScore 
per cell and then averaged per patient pre- or on-treatment. For genes, the average 
was calculated per patient pre- or on-treatment in the indicated cell (sub)types. 
Metagenes represent the average of genes in a gene set calculated per cell. We used 
the pROC (v1.16.2) package in R (default parameters) to generate ROC curves and 
calculate the associated AUC values63.

Assessing the TCR repertoire using V(D)J analysis. We obtained 51,499 T cells 
with a TCR sequence, of which 38,824 cells (75.4%) had paired full-length α and 
β chains sequenced. We only considered productive TCRs, meaning that they 
could be joined in the proper reading frame by V(D)J recombination without 
premature stop codons, enabling expression of a complete TCR α or β chain 
for downstream analysis. Up to 41,978 of the 46,830 (89.6%) T cells annotated 
by scRNA-seq (excluding NK cells and γδ T cells) could be linked to a TCR 
sequence (Supplementary Dataset 11). None of these TCR sequences were 
shared between patients. TCR clonotypes were defined as TCRs with the same 
complementarity-determining region 3 (CDR3) nucleotide sequences. A threshold 
of >2 or >5 cells with the same TCR sequence was used to define clonal cells. We 
retrieved 1,897 TCR sequences that were present in >2 cells, resulting in 12,531 
clonal T cells. When considering a threshold of >5 cells to define a clonal T cell, 
we detected 568 clonotypes and 7,793 clonal T cells. Clonality was defined as the 
complement of evenness (that is, 1 – evenness) as previously described by Riaz and 
colleagues64, where evenness represents the normalized Shannon entropy. This is the 
same definition that was referred to as the STARTRAC expansion index in ref. 19.

The evenness value lies between 0 and 1, with a high value indicating a more 
equal distribution of TCRs and a low value indicating TCR skewing due to clonal 
expansion. Clonality, which reflects the dominance of particular clones across the 
TCR repertoire, was calculated per sample. At T cell subtype level, the STARTRAC 
(https://github.com/Japrin/STARTRAC; v0.1.0) R package was used to calculate 
STARTRAC expansion or T cell clonality. TCR richness65, defined as the number 
of unique TCRs divided by the total number of cells with a unique TCR, was 
calculated to assess clonotype diversity. The Gini coefficient (or Gini index) was 

calculated using the ineq (v0.2–13) package in R and was assessed as an alternate 
measure to calculate the equality of the T cell clonotype distribution. This value 
ranges between 0 and 1, and the closer it is to 1 the less equal the distribution of 
clonotypes is66. To visualize the degree of TCR clonotypes shared between T cell 
phenotypes, the connection weight for each pair of T cell phenotypes was calculated 
as the shared number of unique TCRs divided by the total number of unique TCRs 
in the T cell phenotype being located first on the trajectory. The resulting network 
of relatively shared TCRs was plotted using the igraph package (v1.2.5).

Clonotype expansion and contraction. By considering the TCR sequences of 
T cell clonotypes pre- and on-treatment, we considered a clonotype undergoing 
expansion when (1) there was an increase in frequency (that is, the number of  
cells with the same TCR) or proportion (that is, frequency normalized for the 
number of cells in a sample with a TCR detected) on- versus pre-treatment and 
(2) a frequency on-treatment of >2. The number of expanded clonotypes upon 
treatment defined by these two criteria was calculated per patient and had to be 
>30 to define clonotype expansion. An additional more stringent criterion was 
applied requiring a clonotype to (1) increase in frequency on- versus pre-treatment 
and (2) have a frequency on-treatment >5. A threshold of 10 expanded clonotypes 
defined by this criterion identified patients with clonotype expansion. Clonotypes 
not detected pre-treatment, but clonal on-treatment (frequency >2 or >5) were  
also considered as expanded clonotypes. For DEG and pathway analyses, an 
increase in proportion on- versus pre-treatment as well as a frequency on-treatment 
of >2 was used to define expanding T cells. Clonotype contraction was defined 
as the number of TCRs that were clonal pre-treatment, but not on-treatment. 
Specifically, we considered a clonotype to undergo contraction during treatment 
when (1) there was a decrease in proportion on- versus pre-treatment, (2) the 
frequency pre-treatment was >2 and (3) the frequency on-treatment was <2.

Bulk TCR mapping. Bulk TCR-sequencing was performed on RNA extracted from 
the same resection specimen that was used for scRNA-seq. Reverse-transcription 
reagents from the single-cell immune profiling kit (10x Genomics) were used for 
complementary DNA (cDNA) synthesis. cDNA originating from all input RNA 
was used, rather than from a limited amount of cells. The cDNA was enriched 
using the chromium Single Cell V(D)J Enrichment kit, Human T Cell (10x 
Genomics). Enriched libraries were sequenced on an Illumina NovaSeq6000 
system. To identify and quantify TCR clonotypes by their β chain, fastq files 
were analyzed with MiXCR67,68 (https://github.com/milaboratory/mixcr; 
v3.0.13). Clonotypes were assembled based on the CDR3 sequence (default). The 
non-default option to filter out out-of-frame and stop codons (–only-productive) 
was used. Clonality and richness scores determined by bulk TCR-seq correlated 
with those obtained by scTCR-seq, confirming that their estimation by scTCR-seq 
is correct (Supplementary Fig. 3a).

Cell-to-cell communication of scRNA-seq data. The CellPhoneDB algorithm 
(https://github.com/Teichlab/cellphonedb; v2.1.1) was used to infer cell-to-cell 
interactions. Briefly, the algorithm allows the detection of ligand–receptor 
interactions between cell types in scRNA-seq data using the statistical framework 
described in refs. 69,33. We took the union of the significant interactions found in 
NEs pre-treatment, NEs on-treatment, Es pre-treatment and Es on-treatment to 
explore specific interactions. Next, we assessed the amount of interactions that 
are shared and specific for (1) pre-treatment Es versus NEs and (2) pre- versus 
on-treatment Es, and explored specific interactions indicated as curated (that is, 
annotated by the CellPhoneDB developers) (Supplementary Dataset 10).

CITE-seq. We used the CITE-seq protocol described by Stoeckius et al.70 with 
small modifications. Up to 100,000–500,000 single cells of breast tumors were 
suspended in 100 μl of staining buffer (2% BSA/0.01% Tween in PBS) before 
addition of 10 µl of Fc blocking reagent (FcX, BioLegend) and subsequent 
10-min incubation on ice. This was followed by the addition of 25 µl of TotalSeq 
A (Biolegend) 198 antibody-oligo pool (1:1,000 diluted in staining buffer; 
Supplementary Dataset 12) and another 30-min incubation on ice with mild vortex 
every 10 min. Cells were washed three times with staining buffer and filtered 
through a 40-µm Flowmi strainer before loading with 10x Genomics 3′ scRNA-seq 
library kits into a 10x Genomics Chromium controller. ADT (antibody-derived 
tag) additive primers (1 µl from 1 M stock) were added for cDNA polymerase chain 
reaction (cDNA PCR) to increase the yield of ADT products. ADT-derived and 
mRNA-derived cDNAs were separated by solid-phase reversible immobilization 
purification and amplified separately for library construction and subsequent 
sequencing by a HiSeq4000 or NovaSeq6000 system. Raw sequencing reads 
were demultiplexed and feature counts matrices were created with CellRanger. 
These matrices were further processed with Seurat. Cells with >400 features 
were retained. Overall, CITE-seq was successful on eight patients, of which two 
were Es, resulting in CITE-seq data on 33,119 cells. Data were processed after 
center-log ratio normalization. To identify the cell identity of these retained 
cells, we iteratively clustered with PCA dimensional reduction and t-distributed 
stochastic neighbor embedding visualization and annotated the cell types based on 
established markers. Clustering based on protein data revealed the major cell types 
T, B, myeloid, cancer, endothelial and mast cells,  
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as well as fibroblasts (Supplementary Fig. 3b,c). We failed to identify DCs because 
few DC-specific antibodies were included in the panel. CITE-seq annotated 94.0% 
of cells to the same cell type as scRNA-seq. Moreover, we were able to further 
distinguish CD4+, CD8+ and regulatory T cells as well as NK cells (n = 8,338; 
Supplementary Fig. 3d,e). To assess the differences between E and NE patients or 
pre- versus on-treatment, the Wilcoxon rank sum test was used and P values were 
Bonferonni-corrected for multiple testing.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Raw sequencing reads of all single-cell experiments (scRNA-seq, scTCR-seq and 
CITE-seq) have been deposited in the European Genome-phenome Archive (EGA) 
under study no. EGAS00001004809 (with a summary of the BioKey study and 
patient characteristics) and with data accession no. EGAD00001006608 (to access 
the data itself under restricted access). Requests for accessing raw sequencing reads 
will be reviewed by the UZLeuven-VIB data access committee. Any data shared 
will be released via a Data Transfer Agreement that will include the necessary 
conditions to guarantee protection of personal data (according to European 
GDPR law). Alternately, a download of the read count data per individual patient 
is publicly available at http://biokey.lambrechtslab.org. The publicly available 
gnomAD database (https://gnomad.broadinstitute.org) was used to filter tumor 
exome-seq data for somatic mutations and calculate tumor mutation burden. 
Raw sequencing reads of all exome and low-coverage whole-genome sequencing 
experiments are also provided under EGAS00001004809.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Cell types detected based on scRNA-seq profiling of 175,942 cells. a,b, Heatmap (a) and UMAP (b) showing the expression of 
3 marker genes for each cell type. c, CNV profile in cancer versus stromal cells assessed using InferCNV based on scRNA-seq. d-f, UMAP and barplots 
color-coded for individual patients (d), pre- versus on-treatment biopsies (e) and BC subtype (f) showing their distribution across cell types. pDC: 
plasmacytoid dendritic cell; CNV: copy number variation.
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Extended Data Fig. 2 | See next page for caption.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNature Medicine

Extended Data Fig. 2 | T-cell expansion versus contraction, TIL-scores and PD1 expression. a, Number of clonotypes that contract (yellow) compared 
to the number of clonotypes that expand (purple) per patient. A clonotype was considered to undergo T-cell expansion when it increased in proportion 
on- versus pre-treatment and the frequency on-treatment was >2 (purple). A clonotype was considered to undergo T-cell contraction when it decreased 
in proportion on- versus pre-treatment and the frequency on-treatment was < 2 (yellow). b, Boxplot showing the difference in number of expanded versus 
contracted clonotypes, comparing Es (n = 9) versus NEs (n = 20). c, Percentage of T-cells in the pre-treatment biopsy (gray) per patient compared to the 
number of expanded clonotypes after anti-PD1 (proportion data from Fig. 1a are shown). Horizontal dotted lines indicate the thresholds used to define 
tumors with a high % of T-cells (gray) or with T-cell expansion (purple). d, Number of expanding T-cells per patient with clonotypes not present (novel 
clonotypes; green) or present (pre-existing clonotypes; gray) pre-treatment. Up to 61% (range: 27-85%) of expanded T-cells in Es on-treatment had 
clonotypes already present pre-treatment. e, Percentage of stromal TILs (sTILs) by histopathology on a hematoxylin and eosin stained slide, comparing 
Es (n = 9) versus NEs (n = 19). f, Percentage of TILs based on scRNA-seq (scTILs) determined by the fraction of B- and T-cells in each sample, comparing 
Es (n = 9) versus NEs (n = 20). g-h, Tumor mutation burden (TMB) (g) and chromosomal instability (h) in Es (n = 9 for TMB, n = 8 for chromosomal 
instability) versus NEs (n = 20 for TMB, n = 19 for chromosomal instability) and for each BC subtype; TNBC (n = 13 for TMB, n = 11 for chromosomal 
instability), ER−/HER2+ (n = 3) and ER+/HER2± (n = 15). i, Heatmap of normalized PD1 and UMAP color-coded for PD1. j, Normalized PD1 expression in 
T-cells. Panels b, e-h: exact P values by Mann-Whitney test or Wilcoxon matched-pairs signed rank test for paired samples (pre- versus on-treatment); 
two-sided (b, e, g-h) or one-sided (f); *P < 0.05, *P < 0.01, ***P < 0.001. Panel j: ***P < 0.001 by MAST test and Bonferonni-corrected (Seurat). Panels b, 
e-h: box, median ± interquartile range; whiskers, minimum and maximum.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | T-cell phenotypes during anti-PD1 treatment. a, Heatmap showing expression of marker genes for the 14 T-/NK-cell phenotypes. 
b, UMAP color-coded for marker gene expression of T-/NK-cell phenotypes. c, Heatmap showing expression of functional genes in the 14 T-/NK-cell 
phenotypes. d, UMAP depicting the T-cell phenotypes detected in the proliferative T-cell subcluster. e, Heatmap showing marker gene expression for TREG, 
CD4+ and CD8+ TEX-cells in the proliferative T-cell subcluster. f, T-/NK-cell phenotypes after assigning proliferating T-cells to their respective subtype 
(CD4+, CD8+ TEX-cells and CD4+ TREG). g, Relative contribution (in %) of each T-cell phenotype in on-treatment biopsies, comparing Es (n = 9) versus 
NEs (n = 20). h, UMAP showing all T-cell clonotypes expanding on-treatment (left panel) and pie charts showing the distribution of expanding T-cells 
across T-cell phenotypes (right panel) in Es. Each clonotype on the UMAP has a specific color and clonotypes in pre- and on-treatment tissues are shown 
separately. i, T-cell clonality, Gini index and T-cell clonality of each T-cell phenotype both pre- (upper panel) and on-treatment (lower panel), comparing Es 
(n = 9) versus NEs (n = 20). j, ROC curves for the indicated parameter pre-treatment to predict T-cell expansion. AUC values and 95% confidence intervals 
are shown. Panels g and i: exact P values by two-sided Mann-Whitney test or Wilcoxon matched-pairs signed rank test for paired samples (pre- versus 
on-treatment); *P < 0.05, *P < 0.01, ***P < 0.001. Panels g and i: box, median ± interquartile range; whiskers, minimum and maximum.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature Medicine

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of expanding T-cells trajectories. a, Barplots showing TCR richness for the indicated CD8+ T-cell phenotype.  
b, Clonotype sharing (thickness indicates proportion of sharing) between CD8+ T-cell phenotypes. c, Expression dynamics of transcription factors (TFs) 
along the CD8+ TEX-trajectory. d, Density plots reflecting the relative number of T-cells combined. e, Violin plots showing expression of T-cell effector, 
cytotoxicity and exhaustion markers in CD8+ TEX-cells on-treatment. ***P < 0.001 by two-sided Wilcoxon rank sum test per gene. f, LAMP1 expression by 
CITE-seq. ***P < 0.001 by two-sided Wilcoxon rank sum test and Bonferroni-corrected (Seurat). g, Cell cycle scores along the CD8+-trajectories pre- and 
on-treatment in E versus NE. h, Heatmap (left panel) and 2D density UMAP (right panel) showing that the major CD4+ T-cell phenotypes (CD4+ TN, TEM, TEX)  
can be split into subclusters with corresponding marker genes. i, Barplots showing TCR richness for the indicated CD4+ T-cell phenotype. j, Clonotype 
sharing (thickness indicates proportion of sharing) between the CD4+ T-cell phenotypes. k, Density plots reflecting the relative number of T-cells 
combined. l, Violin plots showing expression of T-cell effector, cytotoxicity and exhaustion markers in CD4+ TH1- and TFH-cells on-treatment. ***P < 0.001 
by two-sided Wilcoxon rank sum test per gene. m, Cell cycle scores along the CD4+-trajectories. Gray shades in panel c, g and m represent the 95% 
confidence interval at any given pseudotime.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Expression signatures and phenotypes predictive of T-cell expansion. a,b, Volcano plot showing DEGs between CD8+ (a) and 
CD4+ (b) T-cells that expand versus those that not expand pre-treatment. Black dots: P=ns; gray: P < 0.05; red: P < 0.05 and absolute log2FC≥0.5. P values 
by MAST test and Bonferroni-corrected (Seurat). Genes in bold are discussed in the manuscript. c-d, GSEA (hypeR) on genes up- or down-regulated in 
pre-treatment T-cells that expand (c) versus T-cells that do not expand upon treatment (d) on REACTOME (upper panel) and GO (lower panel) pathways. 
e, Scatterplots showing Spearman correlations between the number of expanded clonotypes versus the abundance of phenotypes, or average expression  
of marker genes and signature module scores per patient. Signature module scores were calculated using the Seurat function AddModuleScore per cell  
and then averaged per patient. P values by two-sided Spearman’s rank correlation test. R values are Spearman’s rank correlation coefficients (rho).  
f, ROC curve based on the average module expression of our 50-gene signature in CD4+ T-cells (excluding TREG) pre-treatment to predict T-cell expansion. 
AUC-value and 95% confidence interval are shown. g, Heatmap showing protein expression of 7 immune stimulation-induced immune-checkpoints in all 
T-cells, CD8+ and CD4+ T-cells.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | T-cell expansion according to BC subtype and in patients receiving neoadjuvant chemotherapy followed by anti-PD1. a, UMAP 
pre- and on-treatment color-coded for expanded clonotypes in TNBC (n = 5; upper panel) and ER+/HER2± (n = 3; lower panel) Es. b, Relative contribution 
of T-cells pre-treatment in Es, comparing TNBC (n = 5) and ER+/HER2± (n = 3). c, Volcano plots showing DEGs for CD8+ expanding T-cells in TNBC versus 
ER+/HER2± Es pre-treatment (left panel) and on-treatment (right panel). d, Volcano plots showing DEGs for CD4+ expanding T-cells in TNBC versus ER+/
HER2± Es pre-treatment (left panel) and on-treatment (right panel). e, UMAP of 50,693 cells from n = 11 BC patients with neoadjuvant chemotherapy 
followed by anti-PD1 (replication cohort or cohort 2) by scRNA-seq color-coded for the indicated cell type. f, Relative contribution of each cell type 
(in %) pre-treatment in the replication cohort, comparing Es (n = 3) versus NEs (n = 8). g, Normalized PD1 expression in T-cells (cohort 2). h, Relative 
contribution of each T-cell phenotype (in %) on-treatment in the replication cohort, comparing Es (n = 3) versus NEs (n = 8). i, Volcano plot showing DEGs 
between pre-treatment T-cells that expand (n = 347 cells) versus those that do not expand (n = 3159 cells) in the replication cohort. j, ROC curve based 
on the average module expression of TH1-activity and our 50-gene signature in CD4+ T-cells (excluding TREG) pre-treatment to predict T-cell expansion. 
AUC values and 95% confidence intervals are shown. Black dots in Volcano plots (panels c, d and i): P=ns; gray: P < 0.05; red: P < 0.05 and absolute 
log2FC≥0.5. P values Volcano plots by MAST test and Bonferroni-corrected (Seurat). Genes in bold are discussed in the manuscript. Panels b, f and h: 
exact P values by two-sided (b) or one-sided (f,h) Mann-Whitney test; *P < 0.05, *P < 0.01, ***P < 0.001. Panels b, f and h: box, median ± interquartile 
range; whiskers, minimum and maximum. Panel g: **P < 0.01, ***P < 0.001 by MAST test (Seurat).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | DC and monocyte/macrophage subclustering. a, Heatmap showing 3 marker genes for each DC phenotype. b, UMAP of DCs 
color-coded for one marker gene per DC phenotype. c, Heatmap of genes specific for cDC2 and pDC showing that ASDCs share characteristics of 
cDC2s and pDCs. d, UMAP of DCs color-coded for PD-L1/L2 and CCL19. e, Heatmap showing expression of the mregDC signature described by Maier 
and colleagues26 across DC phenotypes. f, Relative contribution of each DC phenotype (in %) to all cells pre-treatment, comparing Es (n = 9) versus 
NEs (n = 20). P>0.05 for all by two-sided Mann-Whitney test. Box, median ± interquartile range; whiskers, minimum and maximum. g, Volcano plot 
showing DEGs in DCs comparing Es versus NEs pre-treatment. Black dots: P=ns; gray: P < 0.05; red: P < 0.05 and absolute log2FC ≥ 0.5. P values by 
MAST test and Bonferroni-corrected (Seurat). Genes in bold are discussed in the manuscript. h, Heatmap showing marker genes for each myeloid cell 
phenotype. i, UMAP of myeloid cells color-coded for one marker gene per myeloid cell phenotype. j, Heatmap showing expression of functional genes 
in the 10 myeloid cell phenotypes. k, Boxplot showing relative percentage of DCs and macrophages detected in each patient (n = 31) by scRNA-seq. 
Box, median ± interquartile range; whiskers, minimum and maximum. FC: fold change. l, GSEA (hypeR) based on REACTOME for DEGs in macrophages 
comparing Es versus NEs pre-treatment.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Pathway analysis in cancer cells. a, Change in Ki67 positivity (by immunohistochemistry) comparing paired on- versus 
pre-treatment biopsies in Es (n = 8) versus NEs (n = 19). Box, median ± interquartile range; whiskers, minimum and maximum. b-c, Differences in pathway 
activities scored per cell by GSVA pre-treatment in Es versus NEs (b) and on- versus pre-treatment in Es (c). Shown are the top 35 pathways based on 
absolute t-values obtained by a linear model. d, Violin plots showing GSVA scores for the indicated pathways. Stripes indicate median values. ***P < 0.001 
(Benjamini-Hochberg adjusted) and absolute t-value>10 by a linear model. e-f, GSEA of DEGs upregulated on-treatment in cancer cells of Es using 
hypeR on GO (e) and hallmark gene sets (f). Genes driving enrichment included CD74, HLA-DQA1 (antigen presentation), IDO1 (antigen-dependent T-cell 
activation), A2M (tumour migration and growth), CXCL10 and CXCL14 (chemoattractant of immune cells), CHI3L1 (IFN production).
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Extended Data Fig. 9 | Immune context analysis. Spearman correlation between the number of expanded clonotypes and other key functional marker 
genes or signature modules pre-treatment. Average expression of genes was calculated in the indicated (sub)cell type pre-treatment per patient. In each 
heatmap two clusters positively or negatively correlating with expansion were identified, as indicated by the squared boxes.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Cell-to-cell type interactions by CellPhoneDB. a, Heatmap showing the number of interactions in NEs pre-treatment, in Es 
pre-treatment, NEs on-treatment and Es on-treatment. b, Barplot showing for each cell-to-cell type interaction, the number of interactions shared and 
specific pre-treatment comparing Es versus NEs. c, Dotplot showing the significance (-log10 P value) and strength (mean value) of specific interactions 
between cancer cells and CD8+ T-cells comparing Es versus NEs. The aLb2 complex refers to ITGAL and ITGB2, which together form LFA-1 d, Difference 
in the number of significant CellPhoneDB interactions in Es comparing pre- versus on-treatment. e, Barplot showing per cell-to-cell type interactions, the 
number of interactions shared and specific in pre- versus on-treatment biopsies from Es. f, Dotplot showing the significance (-log10 P value) and strength 
(mean value) of specific interactions in Es between CD8+ T-cells and myeloid cells (either DCs, macrophages or monocytes) pre- versus on-treatment.
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